Study of Trotter-like Approximations

R. M. Fye 1

KEY WORDS: Trotter formula; quantum Monte Carlo; partition function; classical representation.

Many quantum Monte Carlo techniques require a Trotter-like approximation before they can be implemented. In an effort to understand better the performance of these techniques, we explore the errors when Trotter-like approximations are used for calculating free energies and operator expectation values.

We consider first the original form of the Trotter formula ${ }^{(1,2)}$

$$
\begin{equation*}
e^{-\beta H}=\lim _{L \rightarrow \infty}\left[\left(\prod_{m=1}^{M} e^{-(\Delta \tau) H_{m}}\right)^{L}\right] \tag{1.1}
\end{equation*}
$$

where

$$
\begin{align*}
\Delta \tau & =\beta / L \tag{1.2}\\
H & =\sum_{m=1}^{M} H_{m} \tag{1.3}
\end{align*}
$$

and

$$
\begin{equation*}
\prod_{m=1}^{M} e^{-(\Delta \tau) H_{m}}=e^{-(\Delta \tau) H}+\operatorname{order}(\Delta \tau)^{2} \tag{1.4}
\end{equation*}
$$

as well as the generalizations of Suzuki ${ }^{(2)}$ and of De Raedt and De Raedt. ${ }^{(3)}$ These generalizations can all be written in the form

$$
\begin{equation*}
e^{-\beta H}=\lim _{L \rightarrow \infty}\left[f^{(n)}\right]^{L} \tag{1.5}
\end{equation*}
$$

[^0]where
\[

$$
\begin{equation*}
f^{(n)}=e^{-(\Delta \tau) H}+\operatorname{order}(\Delta \tau)^{n+1} \tag{1.6}
\end{equation*}
$$

\]

and where we define n as the order of the Trotter approximant. We also consider an expansion of $e^{-(\Delta \tau) H}$ in powers of $(\Delta \tau) H$ so that ${ }^{(2)}$

$$
\begin{equation*}
f(n)=\sum_{k=0}^{n} \frac{1}{(k!)}[-(\Delta \tau) H]^{k} \tag{1.7}
\end{equation*}
$$

We define

$$
\begin{equation*}
\Delta F=F_{\text {exact }}-\frac{1}{\beta} \ln \left\{\operatorname{tr}\left[\left(f^{(n)}\right)^{L}\right]\right\} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta\langle\mathcal{O}\rangle=\langle\mathcal{O}\rangle_{\text {exact }}-\left\{\operatorname{tr}\left[\mathcal{O}\left(f^{(n)}\right)^{L}\right]\right\} /\left\{\operatorname{tr}\left[\left(f^{(n)}\right)^{L}\right]\right\} \tag{1.9}
\end{equation*}
$$

We investigate finite lattice systems specifically, letting N denote the number of sites in the lattice. We consider the dependence of ΔF and $\Delta\langle\mathcal{O}\rangle$ on $\Delta \tau$ for $\Delta \tau$ small, on N for N large, and on β for β large, and obtain analytically the following main results.

Suppose that a first-order Trotter approximation of the form of (1.1) is used. Then, if all of the H_{m} are Hermitian, with N and β constant, the correction term linear in $\Delta \tau$ for the free energy and for the expectation values of Hermitian operators vanishes; i.e., for a Hermitian breakup, the error due to using a first-order Trotter approximation has a $(\Delta \tau)^{2}$ dependence rather than the $\Delta \tau$ dependence that might be expected. ${ }^{2}$ This dependence is in general not improved by using a second-order approximant $f^{(2)}$. Next, for any Trotter approximation, we find for constant $\Delta \tau$ and β that the errors in the free energy per site and in the expectation values of local operators are independent of N if the lattice is sufficiently large and all interactions are of finite range. This means that, for a certain desired accuracy, $\Delta \tau$ may be chosen independently of lattice size. Last, we find for $\Delta \tau$ and N constant that ΔF and $\Delta\langle\mathcal{O}\rangle$ approach constants as $\beta \rightarrow \infty$.

We then consider the behavior when an approximate expansion of $e^{-(\Delta \tau) H}$ in powers of $(\Delta \tau) H$ is used. For $\Delta \tau$ sufficiently small and N constant, we show that the error in the approximate expectation value of an

[^1]operator vanishes as $\beta \rightarrow \infty$, so that one approaches the exact ground state value. However, to retain a given accuracy in the expectation values of local operators at finite β, we find that $\Delta \tau$ must be chosen smaller for larger lattices. Also, the value of β at which operator expectation value corrections become small can be quite large. Thus, this approximation seems in general less useful for exploring the properties of larger systems.

ACKNOWLEDGMENTS

The author would like to express his appreciation to J. E. Hirsch for very helpful discussions and comments. This work was supported by the National Science Foundation under DMR82-07881 and by a grant from the Committee on Research at UCSD.

REFERENCES

1. H. F. Trotter, Proc. Am. Math. Soc. $10: 545$ (1959).
2. M. Suzuki, Commun. Math. Phys. 51:183 (1976).
3. H. De Raedt and B. De Raedt, Phys. Rev. A 28:3575 (1983).
4. R. Fye, Phys. Rev. B 31:6271 (1986).

[^0]: ${ }^{1}$ Department of Physics, University of California, San Diego, La Jolla, California 92093.

[^1]: ${ }^{2}$ Upon reading this result at the Frontiers of Quantum Monte Carlo Conference, M. Suzuki subsequently derived an elegant theorem concerning the coefficients of all odd powers of $\Delta \tau$ in the series for ΔF and $\Delta\langle\mathcal{O}\rangle$. However, as we are interested in the small $\Delta \tau$ limit, we concern ourselves with the lowest order $\Delta \tau$ correction term only. Regarding that term, Suzuki's assumptions are a special case of the more generalized conditions which we assume. ${ }^{(4)}$

